

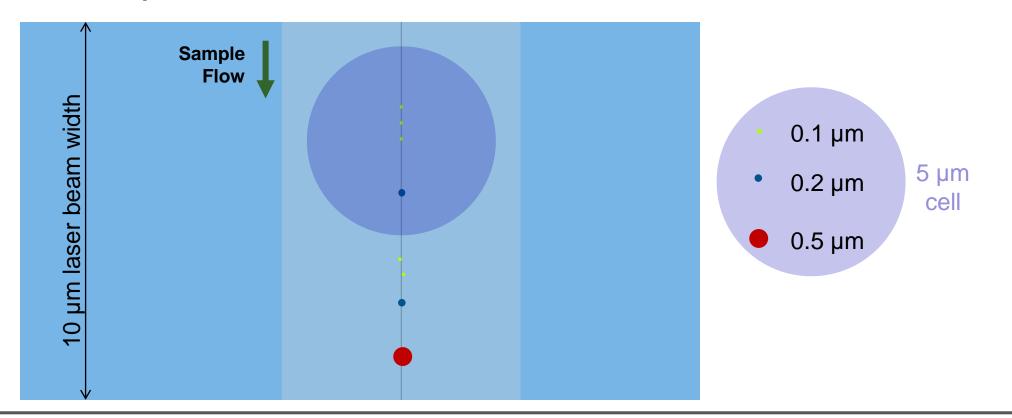
ThermoFisher SCIENTIFIC

Introduction to Small Particle Flow Cytometry

- Microorganisms such as:
 - Bacteria
 - Yeast
 - Algae
- Microparticles such as:
 - Exosomes
 - Microvesicles
 - Apoptotic microvesicles

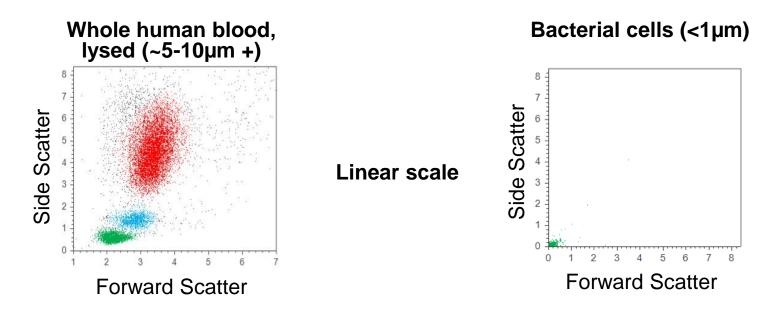
Appropriate controls and instrument maintenance are required to perform analysis on small particles:

- 1. Flow cytometer must be free from contaminations.
- 2. Appropriate to experiment controls needs to be used. That can include:
- Size-calibrated beads
- Filtered PBS
- Unstained and stained controls

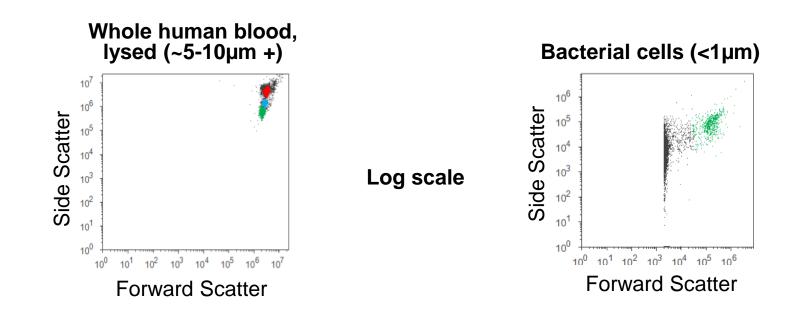


Sample Flow Rate	Max. Sample Concentration	Particle Size	Particle Velocity
1000 µL/ min	2.1 x 10 ⁶ cells/mL	 Particles > 4 µm Predominantly acoustic focusing 	8 m/sec*
500 µL/ min	4.2 x 10 ⁶ cells/mL	- Particles > 2 μm - Predominantly acoustic focusing	8 m/sec*
200 µL/ min	6.7 x 10 ⁶ cells/mL		4 m/sec
100 µL/ min	1.3 x 10 ⁷ cells/mL		
25 µL/ min	2 x 10 ⁷ cells/mL	 Small particles < 2 µm Best resolution from background for dimly positives assays Smallest sample core Predominantly hydrodynamic focusing 	4 m/sec
12.5 µL/ min	2 x 10 ⁷ cells/mL		

*Higher flow rates may show some loss of sensitivity


- Sample preparation
 - Ensure to have single cells using an appropriate method for your cells or particles (i.e. vortex, EDTA...), and avoid to much concentrated samples
 - Sample dilution is essential for smaller events!

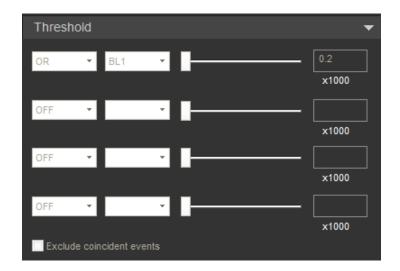
Visualization of your population


- A scatter plot is displayed with the axis on a linear scale by default
 - This display is ideal for most eukaryote cells analysis, such as human blood analysis

• But not adequate for small events

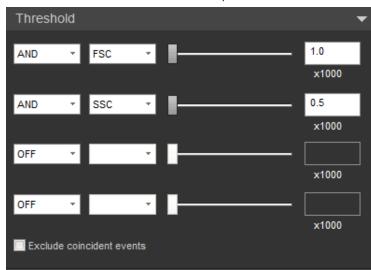
• In order to be able to distinguish small particles from the noise we need to change those axis to a logarithmic scale

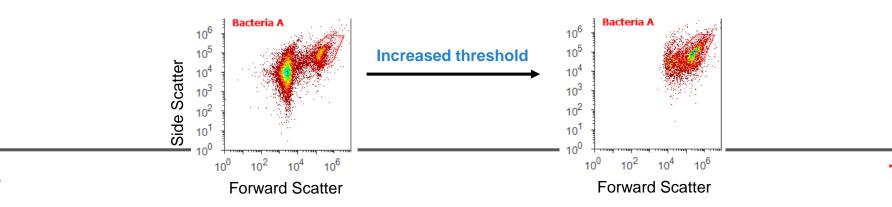
- It is usually recommended to use the <u>height</u> of the voltage pulse rather than the area
 - For small size events, the height of the pulse generally allow a better resolution of populations.
 - It is less sensitive to coincident events and allow to work with more concentrated samples
- Using different parameters to find your populations
 - For very small events (typically under 500nm) the separation on the forward scatter (FSC) is not possible on most standard flow cytometers including the Attune NxT
 - It is then recommended to use the side scatter (SSC) and a fluorescent channel

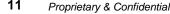


THE KEY OF A SUCCESSFUL EXPERIMENT IS TO SELECT PROPER PMT VOLTAGES AND THRESHOLD

Use threshold


- Setting the Attune[™] instrument settings is key to correct identification of the bacterial population of interest. Optimal settings are found with a balance of threshold and PMT voltage.
 - If your cells/particles are labeled: select a fluorescent threshold in the channel of interest by adding a fluorescence threshold of interest to "Or". The only events recorded upon sample run are those events emitting fluorescence above this threshold.
 - Upon sample run: Increase the forward and side scatter PMT voltages until the population of interest is visualized in the SSC vs FSC density plot.

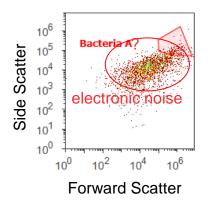


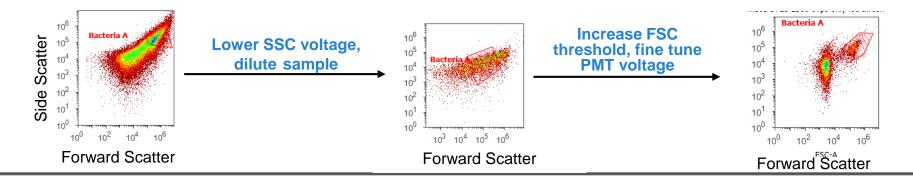

Use threshold

- If your cells/particles are not labeled: Select both a forward and side scatter threshold by selecting "And". Once selected, lower the FSC and SSC thresholds from 10,000* to ~500.
- Upon sample run: Increase the forward and side scatter PMT voltages until you can differentiate the population of interest from electronic noise and/or debris. This will be easiest to visualize if the FSC and SSC threshold are set at 2,000 at the start.
- Gradually increase the FSC and SSC thresholds until electronic noise/debris is eliminated and only cells remain visible.

*Note: the default value is 25,000

Noise can make population identification difficult and can come from different sources:


- Instrument
 - Source of noise:
 - Stray light
 - Low-level electronic signals
 - How to reduce it:
 - Serviced and well aligned / performances tested
 - Decontaminate regularly, at least quarterly or as needed
 - Focusing fluid filtered at 0.1 μ m for events of a size < 500nm
 - Match your focusing fluid salt concentration with your sample



If I can't find my cells or particles?

If your cells are unlabeled, differentiating the bacterial population from electronic noise and debris will take practice.

- Get comfortable with electronic noise:
- You can see events on your plots when there is nothing in your sample (e.g.: 0.2µm filtered water). **This is normal.**
- Expect to observe very high event rates. Event rate will be higher the lower the scatter thresholds are.
- Learn how to adjust instrument settings to differentiate your population of interest.
 - Incorrectly set PMT voltages and threshold settings can lead to frustration.

- Use a fluorescent marker
 - Helps define microbial population
- Understand the fluorescent marker
 - Organisms stained? Appropriate controls?
- Take care to reduce "noise"
 - Filter buffers through a 0.1 µm filter or smaller
 - Use buffers with similar refractive index as "sheath"
- Take care to avoid aggregation
 - Use appropriate cell concentrations
 - Employ doublet discrimination

Controls

- Control sample are needed to validate the quality of your data
- You will always need:
 - Negative control: stained buffer/medium only
 - Negative control: non stained cells
 - Appropriate positive controls

- Carryover is likely to be high for smaller particles.
- If carryover is detected or feared, there are some ways to minimize it:
 - Run an extra rinse between samples
 - For concentrated samples: Sanitize Attune SIP between sample
 - Using the AAS: increase the number of rinses between wells
 - Clean your instrument more often (using Deep Clean function)
 - Always run a thorough shutdown
 - Always use freshly prepared bleach

- Be familiar with the noise
- Play with voltage and threshold
- Prepare the right controls (negative, positive, buffer only...)
- Setup plot as logarithm and using height
- Use fluorescence to discriminate from background
- Have a clean and properly maintained instrument
- Setup threshold on fluoresccence
- There is no standards for microvesicles
- Use filtered solutions
- Dilute sample to avoid several events at the same time in front of the laser
- Use low flow rate for very small particles

